
概要

アルテラ製 FPGA(Cyclone5GX)と高速通信が可能な USB3.0 を採用したシステム開発ボードです。従来 PCI Express で処理してきたシステムを USB に置き換えたり、機器の小型化やタブレット端末での制御など、様々なシチュエーションに対応できます。

外部システムとの接続には FPGA の I/O 機能を有効活用できるように、メザニンコネクタ (ハイスピードコネクタ) を採用し、高速性と柔軟性を確保しています。

PC インタフェースと FPGA 周辺回路が完成したボードなので、このボードに必要な機能を追加することにより、小ロット、短納期、低コストのシステム開発が可能になります。

<CX-Card5 外観>

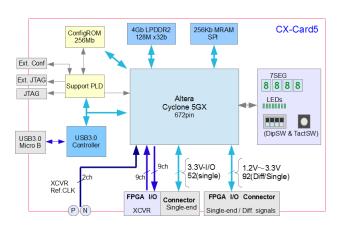
特長

✓ Altera-FPGA "Cyclone5GX"搭載の小型基板

- 名刺2枚分の大きさなので、最終製品への組込 や機器の小型化、低消費電力化が可能
- ▶ アルテラ製ソフトCPUコア"Nios2"搭載可能
- ▶ 専用コンフィギュレーションROM搭載
- ▶ トランシーバ回路Tx/Rx それぞれ9ch装備

✓ USB 3. 0 (Super Speed) インタフェース搭載

- 実効データ転送レート: 平均 350MB/s
- デバイスドライバ、DLL、オープンソース・リファレンス制御アプリ(C++/VB.net)標準添付


√ 高速・多機能 I/O ポート

- FPGA のI/O ピン144本をハイスピード・コネクタ2個に収容
 - 1.2V~3.3Vの信号インタフェースに対応
- FPGAのI/O機能設定により、差動(LVDS) インタフェースが可能
- シ シングルエンド 50Ωのインピーダンス整合 済み

✓ ローパワーでユニークなメモリシステム

- > 4 Gbit LPDDR2 メモリ(128M x32bit)
- > 256Kbit 不揮発性 RAM (MRAM: SPI)

ハードウエア仕様

<ブロック図>

1. FPGA 部

トランシーバ回路内蔵のアルテラ社 Cyclone5GX デバイス 5CGXFC7D7F27C8N を標準搭載していま す。 LE 数 194.5K 個、内蔵ブロックメモリ 6.8Mb, DSP ブロック 312 個、PLL 7 個、トランシーバ回路 Tx 9ch、Rx 9ch の規模です。トランシーバ・チャ ネルの速度は最大 2.5Gbps です。

USB 制御 IC (FX3) と 32bit のデータ、6 本の制御線でインタフェースします。このとき 100MHz のクロックに同期してデータ転送を行います。

FPGA 開発ツールは、無償の Quartus Prime Lite edition が利用できます。

FPGA に 5CGXFC5C6F27I7N を搭載した製品も用意しています。この場合、FPGA のスピードグレードが"7"になり、"8"に比べて約 10%程度高速に動作します。LE 数 77K、内蔵ブロックメモリ 4.4Mb、DSP ブロック 300 個、PLL 6 個、トランシーバ回路Tx 6ch、Rx 6ch の規模です。

2. **USB インタフェース**

USB3.0 (Super Speed) に準拠した USB 制御IC (Cypress 社製 FX3 デバイス) を搭載しています。 この制御 IC と FPGA が接続しています。 FPGA には USB 制御 IC とのインタフェース回路が用意されているので、購入後すぐに PC と USB を使った通信ができます。この USB インタフェースは Smart-USB Sigma システムコア (注 1)を採用しているので、高速なデータ転送が可能です。 USB 転送は以下の2種類をサポートしています。

- コントロール転送
- バルク転送

USB コントロール転送は、FPGA 内に構成したハードウエア・レジスタなどへのアクセスに使用します。 USB バルク転送は、大容量データを PC に転送したり、PC からボードに転送するときに便利です。 バルク転送時の実データ転送レートは約350MByte/s(注 2)を実現しています。引き続き、機能向上を実施し、転送レートの向上を目指します。

※USB2.0 ポートでも動作しますが、転送レートは低下します。

注1) USB システムコア: USB に必要な全てのデータをパッケージ. ユーザシステムにドロップインで利用できるシステム IPです.

注 2) Intel Chipset Z77 チップセット採用 PC での値です. ルネサス社製ホスト IC の場合は、性能が低下します.

3. FPGA コンフィギュレーション

USB コンフィギュレーション

USB 経由により、FPGA へのコンフィギュレーションを瞬時に(約 0.3 秒以下)完了します。メーカー純正のプログラミング・ケーブルでは開発ツールを起動させておかなければならず、JTAG 経由のため低速で時間がかかります。 CX-Card5 ボードでは添付のリファレンス・アプリケーション起動時、自動的に FPGA コンフィグする機能があります(オートコンフィグ機能)。 また、USB 経由のコンフィグを利用すると、複数の FPGA コンフィグデータを用意し、その場の状況に応じて即座に FPGA を書き換えることができます。

専用コンフィグ ROM(128Mbit)

USB を利用しない、または利用できない状況でも FPGA コンフィグができる様に、専用のコンフィグ ROM (128Mb シリアル FlashROM) を搭載しています。 開発が完了した時点や、PC 無しでデモを行うようなときに便利です。

また、FPGA コンフィグデータを暗号化(AES 256bit)し、悪意のあるリバースエンジニアリングから大切なデータを保護することができます。

JTAG ポートとコンフィグ ROM

コンフィグ ROM にデータをプログラムする場合には、JTAG ポートを利用します.この場合、アルテラ製ダウンロードケーブル (USB Blaster) を利用してください。

このポートとダウンロードケーブルを使って、 SignalTap 機能を実現し、チップ内部の信号観測も できます。

4. FPGA 外部メモリ

LPDDR2 <4Gbit: 32bit データ幅>

(MT42L128M32D1GU-25W 相当品 128M x 32bit) FPGA 開発ツールに付属する UniPhy IP を利用してメモリ制御コントローラを生成できます。この場

合、メモリクロック周波数 166MHz~300MHz、データレート Max.666Mbps/ピンです。

※メモリデバイスとしてはデータレート Max.800Mbps/ピンですが、FPGA 性能として Max.600Mbps になります。

MRAM <256Kbit SPI>

(MR25H256CDC 32K x 8bit 3.3V 動作 SPI)

Max.40MHz の速度でアクセスが可能な不揮発性 シリアル SRAM を備えています。パラメータの格納、 小規模データの一時的な保存等に便利です。

5. 外部接続用コネクタ

高速コネクタ CN1 (基板ハンダ面、青枠内)

(QSH-060-01-L-D-A samtec 社製コネクタ)


120 ピン高速コネクタ CN1 には、FPGA-IO ピン を 92 本収容しています。

オンボードの 4 極ディップスイッチ設定により、
1.2 / 1.5 / 1.8 / 2.5 / 3.3 (V)で運用できるシング
ルエンド I/O 信号として、パラレルデータを
200MHz のクロックレートでインタフェースすることができます(全ピン同じ I/O 電圧です)。

※ボードリビジョン R2.0 では、製品出荷時、5 種類の I/O 電圧をディップスイッチで選択できます。

これらの I/O ピンは差動信号の LVDS インタフェース(2.5V)としても構成できます。ただし、Tx 用 23ch、Rx 用 23ch です。それぞれ、送信専用ピンと 受信専用ピンとして設定します。

LVDS インタフェースの終端をするには、 FPGA-I/O 機能のオンチップ抵抗を利用できるので 外部抵抗は不要です。

<CX-Card5 ハンダ面(枠内が高速コネクタ)>

高速コネクタ CN2 (基板ハンダ面、黄枠内)

(QSH-060-01-L-D-A samtec 社製コネクタ)

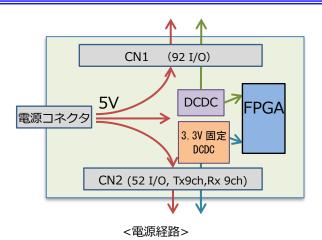
120 ピン高速コネクタ CN2 には、FPGA-IO ピン 3.3V-LVCMOS/LVTTL 仕様 52 本と、トランシー バ回路専用チャネル Tx:9ch、Rx:9ch を収容して います。 緑枠部分がトランシーバ部の I/O ピンで す。

<CN2 拡大>

トランシーバ・チャネルを除く CN2 の I/O 電圧は 3.3V 固定で全ピン共通です。 CN1 とは異なる I/O 電圧での運用が可能です。

CN1、CN2 と接続するコネクタ型番は、samtec 社 QTH-060-xxx です。

I/O を 3.3V または 3.0V で運用する場合の注意点


3.3V/3.0V 設定で入力ピンとしてアサインするときには、オンチップ・クランプダイオード機能をオンにすることを推奨します。

ボードリビジョン R2.0 の場合、製品出荷状態では I/O 電圧を 3.0V 設定できません。基板上の抵抗値を変更することにより設定ができます。

高速コネクタ経由の給電について

高速コネクタの CN1、CN2 は、GND ピンと電源 ピンを含んでいます。CN1 と CN2 は異なる I/O 電 圧で運用でき、それぞれ設定した I/O 電圧はコネク タを通じてボード外部に給電できます。それぞれの コネクタからは、ボード本体に給電する+5V 電源を そのまま接続できます。

I/O バンクへ給電する DCDC コンバータの電源容量は Max. 2 A なので、この電源系を外部システムで使用する場合は、FPGA での消費電流と外部の消費電流に注意して下さい。電流容量に余裕がない場合には、5V 電源系から必要な電源を生成するようにして下さい。

トランシーバ用リファレンスクロック入力コネクタ

(734120110 molex 社製 UMC コネクタ)

トランシーバ回路のリファレンスクロック入力コネクタを極小 BNC コネクタにより、2 系統用意しています。 ヒロセ電機 U.FL シリーズコネクタ等と互換です。50Ωインピーダンス。

GPIO (3.3V 固定)

FPGA の 3.3V-I/O バンクに直結した GPIO 6本を 2.54mm ピッチ間隔で配置しています。1 列 8 ピン仕様(3.3V と GND)のスルーホールなので、一般的なピンヘッダを実装して利用できます。

6. シリアルポート

RS232 仕様のシリアルポートです. ソフト CPU などを実装した際のターミナル出力やボード間通信 等に利用できます。1 列 2.54mm ピッチ 5pin 仕様です。一般的なピンヘッダを実装して利用できます。

7. 表示器、スイッチ

FPGA の I/O に接続したチップタイプ LED (スタティック点灯方式) を8個、4桁7セグ LED (ダイナミック点灯方式) を制御できます。また、FPGAの I/O に直結した汎用4極ディップスイッチ(ピンセット等先の細いもので On/Off できます)を1個とタクトスイッチ1個を装備しています。

8. 高精度発振器

100MHz 水晶発振器 (LVCMOS 3.3V):

USB 制御 IC と FPGA がインタフェースするとき に使用するクロック源です。 FPGA の PLL を利用 して 100MHz 以外の周波数を生成できます。

100MHz 水晶発振器 (LVDS 3.3V AC 結合):

FPGA と LPDDR2 がインタフェースするときに使用するクロック源です。

予備クロック搭載エリア:

ユーザ任意の水晶発振器を搭載できる予備エリアです. 7mm x 5mm サイズ、6 ピン、3.3V/LVDS 仕様の発振器を実装できます。トランシーバ用リファレンスクロック用です。

ボード仕様

基板サイズ : 110 x 91(mm) 12 層 鉛フリー仕様

(名刺を2枚並べた大きさと同じです)

電源電圧 : 単一 5.0V (±5%) 給電

2極端子台または DC ジャックから給電できます。

FAN 用電源コネクタ:

ボードに給電する 5V がそのまま FPGA の冷却ファン用のコネクタに接続しています。

ボード消費電流

USB を接続した状態で FPGA 未コンフィグの場合;

Typ. 380 mA/5V

USB を接続した状態で FPGA コンフィグの場合;

(PCからLPDDR2(600MHz)に対してRD/WR するサ

ンプル回路: ALM 使用率 4%)

614~715mA/5V

ソフトウエア仕様

USB インタフェース概要

~平均実効データ転送速度 350MByte/s ~

CX-Card5ボードのUSB3.0 インタフェースは、購入した その日から利用できます。ボード専用のUSB ターゲット デバイスドライバ、DLL、制御アプリケーションを製品に 添付しています。この内、制御アプリケーションのみオー プンソース化しているので、VBやVC++(.net系)、Python 等を利用し、カスタマイズが可能です。また、Excel VBA やNI社のLabVIEW用リファレンス制御アプリケーショ ンもオープンソースで無償提供しています。

制御ソフトウエアをカスタマイズする際には、USB プ ロトコルを意識せずにボードとのデータ通信が行える専 用API を添付しているため、USB の専門知識がなくても ソフトウエア・プログラミング知識があれば、どなたでも USB 制御システムを構築できます。

製品添付ソフトウエア

- 1. USB ターゲット・デバイスドライバ
- 2. DLL (API 仕様書付き)
- 3. 制御アプリケーション (オープンソース、C++、VB.net、C++Builder等)
- 4. USB 制御ファームウエア (ボードトのFlashROMに格納)

動作環境

Windows 10 / 11 に対応

USB3.0 (Super speed) が動作するインタフェースを装 備していること

※高速な転送レートを得るには、USB3.0ネイティブ環境 が必須です(PCチップセット内にUSB3.0ホスト機能が含 まれていること)。ルネサス社製USB3.0ホスト制御ICに よりUSB3.0機能を実現しているPCでは、性能が低下しま す。

製品モデル構成

製品発注コード

CX-Card5/7C8 (5CGXFC7D7F27C8N搭載) CX-Card5/5D7

(5CGXFC5C6F27C7N搭載)

添付品

✓ USB3.0対応 ケーブル (MicroB-A) ✓ USB デバイスドライバ、DLL、API 仕様書、ボード回 路図、USB ファームウエア (オンボード)、USB イン タフェース部タイミングチャート、フローチャート等の データを収録したDVD-ROM 1枚

CX-Card5ボードはすべて鉛フリー仕様で国内製造して います。 ボード上のハンダによるショートパターンなど を変更する際には、鉛フリー対応の機器をご使用ください。

オプション

ユーザ I/O コネクタを変換するオプションボード 『Card-UNIV4』を用意しています。CX-Card5 に接続す ることで、120pin のメザニンコネクタを 30 ピン (2.54mm ピッチ)コネクタと SMA,極小同軸コネクタ (UMC) に変換できます。

< Card-UNIV4 >

コネクタ CN1、CN2 をそれぞれ 30 ピン MIL コネクタ 4 個に変換します。

CN2 には FPGA のトランシーバ回路 I/O を収容していま す。これらのピンを SMA コネクタと極小同軸コネクタに 変換(全 ch 50Ω) します。

送信側 9ch: SMA 2ch、 UMC 7ch

受信側 9ch: SMA 3ch (内、1ch はクロック専用) UMC 6ch SMA コネクタでは Max.6.4Gbps、UMC では Max.4Gbps です。

型番: Card-UNIV4

価格: ¥22,000(稅別価格)

< 専用ACアダプタ #1 >

5V/2AのACアダプタです。

ボードのDCジャックに接続して使用できます。

型番: Card-AC

< 専用ACアダプタ #2 >

5V/4AのACアダプタです。

ボードのDCジャックに接続して使用できます。

型番: Card-AC5

< USBリドライバ >

CX-Card5を装置内に収容したときに、パネルに取り付け て利用できるUSBリドライバです。 パネル側 USB Type-B 筐体内 USB Type-A

型番: PSI-3000

お問い合わせ

開発製造販売元

有限会社プライムシステムズ

TEL:0266-70-1171 FAX:0266-70-1172

E-mail: info@prime-sys.co.jp

URL https://www.prime-sys.co.jp